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Abstract : For resonance states lying on a given Regge trajectory, the two-body production 
mechanism as a function of the excitation of the recurrence state is discussed. A dual 
resonance model suggests general features for the Regge-Regge-particle coupling in- 
volved in such production. An application is made to the high energy production in 
nN .--, naN of p, f0 and g mesons with emphasis on the relative production cross sections, 
the relative t-dependences, the ratio of natural to unnatural parity exchange and the 
helicity dependence. 

I. Introduction 

There is no contplete theory of two-body reactions at high energies. The salient 
features of  the data, however, can be described in a t-channel complex angular mo- 
menlun~ appro:tch. Tile exchange of  a Regge pole is found Ill to explain the energ3' 
dependence and phase of certain amplitudes (net helicity llip n = I in particular). 
The t-dependence of the Regge residue function can be evaluated front duality con- 
siderations. In particular the dual resonance model, B 4, gives a natural scale of I/ot' 
to the energy s attd so defines a residue ~(t) that should be essentially constant in t. 
The resulting t-dependence is indeed observed [ 1 ] experintentally for those ampli- 
tudes that have been found to be Regge-behaved. Other helicity amplitudes have a 
more complicated behaviour and in a complex angular montentum approach this 
implies the presence of  Regge cuts. 

Resonance states have been found to lie on exchange-degenerate Regge trajec- 
tories which are essentially linear in m 2. The highest lying such trajectory for a 
given set of  quantum numbers (the parent or leading trajectory) is well established 
(for example ,o - fo - g; to - A2; K* - K** etc). The relative couplings (partial 
widths) of  such Regge recurrence states to a given channel (mr etc.) have been 
studied. For instance, a dual resonance B 4 model gives an (~e) J decrease of the 
partial widths for large J. The daughter states implied by such dual models are much 
more model dependent. They will be affected by any unitarization or any absorp- 
tion of  low partial waves needed to make the dual resonance model more physical. 

At high energies, it becomes possible to produce Regge recurrence states in quasi 
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two-body reactions, for example nN --, pN, nN ---, f0 N, zrN ~ gN etc. At a given ener- 
gy, from a combined study of the different states on the leading Regge trajectory t .  
one can discuss the J-dependence of  (i) the resonance production cross section, (ii) 
the slope of the differential cross section in t and any eventual shrinking or anti- 
shrinking with J, (iii) the ratio of  different exchanges (for example rr to A 2 ex- 
change in rrN ~ nuN) and the ratio of  different helicity amplitudes, (iv) the relative 
absorption corrections to the Regge pole exchange. 

The next section reviews models that allow a discussion of  the relative produc- 
tion of  Regge recurrences. The on-shell exchange coupling (or equivalently the de- 
cay matrix element) is first discussed. The off-shell or Regge exchange coupling 
relevant to the production process is then discussed in different models. The dual 
resonance model is found to give the most complete treatment and this is related 
to analyses [2] using the inclusive triple Regge limit and finite mass sum rules (dual- 
ity for Regge-particle amplitudes). Appendix A contains relevant definitions and 
clarifications. 

The third section, together with appendix B, represents the specific results for the 
particle-Regge exchange-Regge production vertex from dual resonance models. Cotn- 
pared to the finite mass sum rule approach, a similar decrease of the ratio of natural 
parity exchange to unnatural parity exchange with increasing excitation J is found, 
while, uulike that :tpproach, no systematic anti-shrinking of  tile t-dependence with 
increasing mass is present in the dual model vertex. An analysis of the helicity strttc- 
ture of  the Regge exchange cottpling is made, attd the problem of  the tmwanted 
crossing matrix zeroes ill the s-ch:ttmel helicity n-exchange amplitudes is resolved. 

2. Regge recurrence production 

As a prelude, tile relative production cross section for a spin-J resonance of  mass 
m in the process a + b -" m + e by r-exchange is discussed. Oil the r-particle exchange 
pole, this can be related to the decay matrix element for m ~ a + r. Thus, for rr ex- 
change from arr beam, the recurrence production cross section is related to the nn 
partial width of the spin-J resonance, see also appendix A. 

l listorically, the partial widths of  spin-J resonances were first estimated [3] from 
the centrifugal barrier suppression factors for a decay in a box of  radius R 

m j r j ( m )  ~ gjq [qr h~ 1) (qr )] - 2 ,  

where h j  (1) is a spherical i lankel function of  the first kind. For a linear Regge trajec- 

t As well as the dependence of two-body reactions on J = ot(m 1) of the produced parent state, 
the dependence on m 2 for fLxed-J is also of interest. Thus, using vector dominance, one can 
relate the data on electroproduction (m 2 < 0) and photoproduction (m 2 = 0) of n mesons on 
nucleons to the data on nN -- nrrN with the dimeson system in a P-wave for a range of values 
of m 2 across the p meson width. 
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tory, qR ~ V~, and thus for large J, F(J') decreases asg jJ -J . .w i th  the dynamical 
assumption [4] of a constant gj, this is a very rapid decrease of the partial width 
with J. The usefulness of the centrifugal barrier factor lies rather in describing the 
large q behaviour of the width for fixed-J which is independent of assumptions about 
gj. 

A more reliable estimate of the J-dependence of the coupling Fcd(J) arises from 
considering the elastic scattering amplitude for c + d ~ c + d. For the imaginary part 
of the amplitude, duality relates the average direct channel resonance contribution 
to the Regge exchange amplitude. The t-dependence of the exchange amplitude then 
gives an estimate of the relative strength of different partial waves. For an amplitude 
with t-dependence e ~ R ~t, the contribution of the spin-J partial wave contains a fac- 
tor 

a(J)  "~ e -s(J+ l)/q2 R2 

Thus partial waves with J "" qR will be dominant while those with J ~, qR will be 
suppressed. For a Regge pole exchange amplitude, [R 2 has the form ~' Iog(a's) 
and then q2R2 "" c~'s log ct's. A direct channel resonance of partial width Fed and 
total width 1-'- l- will contribute a bump to the imaginary part of the amplitude a(J) 
of height Fcd/F T and of extent in s (or m 2) of m j  F T. Thus aj will receive an aver- 
age imaginary part of magitude m,F  , .  Then such duality considerations allow an 

• . . d CG s o ' ~  

estunate of the couphng of a spm J ~ ~'s = ~ m" parent resonance to the channel ed : 

m j  l~cd(J) "- e -J / l °g  J.  

This is a much slower decrease with J than that found for tile centrifugal barrier with 
constant gj. 

A more explicit example of such a dual estimation of the strength of the j th  
partial wave from the t-dependence of the high energy amplitude is the B 4 dual 
resonance model itself. Using the Irn "-* nTr dual amplitude [5, 6] gives for the leading 
trajectory : 

q2 q (2a,q2)J 1 
m j r  ( J ) - , . 2 j +  1 m ~ r ( J - l ) ! c j  ' 

where ¢j "" 2 J for large J, and is defined in appendix B. When the relevant isospin 
factors are included, this expression gives a reasonable account [6] of the nn partial 
widths: 0.85 I ~ and 0.34 r are predicted for the f0 and g respectively as against 
experimental va°lues [7] of ~ 0.9 F and ~" 0.5 ['p. Comparison of the g and p partial 
widths provides tile most interesting, test, since this is insensitive to any exchange 

, 2 degeneracy breaking. For large J, and with linear trajectory J = ¢~ m , tile above ex- 
pression has a J-dependence 
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m j F ( J )  " (~e} J 

Such a slow (~e) J exponential decrease is common to "all dual model approaches. 
In the production of  Regge recurrence states at high energy, the coupling or 

Regge residue that enters is (see appendix A) RJ(t ,  m2). When extrapolated to the 
particle exchange pole (c~(t) = 0 or 1 as appropriate).  R is related to the decay ma- 
trix element as function o f J  = a (m 2) discussed above. Thus• the essentially new 
feature of  interest in production is the interplay of the t, J = a(m2)•  and ~. depen- 
dence of  the coupling. 

The n-point dual resonance model allows [8] an explicit calculation of the coupl- 
ing RJx(t, m 2) and the results are presented in appendix B and discussed in detail 
in the next section. Here• such a B n calculation is compared with other approaches 
that have been suggested. Tile inclusive process a + b ~ anything + e, is related to the 
forward a + b + e --" a + b + e amplitude. Tile exchange of  a Regge trajectory o~r(t) 
coupled to b~, then leads to the consideration of  the forward Regge particle scatter- 
ing amplitude r + a ~ r + a. Dualit4y techniques applied to r + a ~ r + a relate the 
triple Regge amplitude at large m ' t o  resonance contributions at small m 2. The 
triple Regge amplitude has a term (s/m2) 2~'ff) which correlates the t- and m2-depen - 
dence, and this is conjectured [2] to be valid on average for m 2 in the resonance 
region. This gives rise to a production cross section for anything of  mass rn 2 which 
has a t-dependence antishrinking as e -t2cz'l°gm? with increasing m 2. Tile same 
factor (s/m2) 2=(t) also comes t froth t:,king the dot,ble Regge limit in the exclusive 
process a + b "-* c + d + e. l lere duali ty techniques need to be applied [9] to the 
r + a -'* c + d amplitt, de for varying m ' .  

The (S/ttl2) 2a(t) factor also yields a faster fall off  with m 2 when the exchanged 
trajectory ~ t )  is higher lying. Thus natural parity exchange (0~(t) "-. 0.5 + t) will 
become less important  relative to unnatural parity exchange (c~(t) "- 0 + t) as m 2 
increases at fixed-s. 

In practice for ~(m 2) in the range i to 2, the leading trajectories should dom- 
inate the r + a ---, r + a and r + a --, c + d processes, and such dual predictions will be 
relevant to parent resonance production. For higher m 2, however, just as for particle- 
particle scattering, the leading trajectory resonances will no longer dominate the 
amplitudes. Thus, there is no conflict with the result (sect. 3) from the dual reso- 
nance model that there is, in general, no antishrinking of  the t-dependence with m 2 
for the production of  parent trajectory states. 

Complementary to the complex angular momentum plane approach to the energy 
dependence, the dual absorptive model [10] or geometric model seeks to describe 
the momentum transfer dependence of  two-body reactions. Thus the t - :ependence 
of  the production cross section is predicted in such a model, and its dependence on 

1" Reggeizing the two-body a + b -.', m + e production amplitude gives an expression #(t) P~t) t 
(cos Or). For large s at t ~t 0 cos 0 ,~  s(2q.,mqbe) -a ; and for large mass m ~, qan . ~  m2(4t) -~ . 
Thus. Pc~(t)(cos a t) behaves as (s/m) . ~l'o have reasonable analytic behaviour, "however, 
~'(t) must contain a factor (qamqbe) art) and then the resultant two-body Regge exchange am- 
plitude has no explicit kinematic dependence o n  m 2. 
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the external mass m of a produced resonance can be found. Indeed, if a universal 
radius of peripherality R 0 is supposed for all exchange reactions, then fl~e t-depen- 
dence Jx (R o , ~ - 7 )  is independent of m 2 . Remembering the motivation via duality 
with peripheral resonances at low energy, one might rather expect the average 
angular momentum L o ~ qR to be independent of m 2. Then taking account of the 
dependence on m 2 of the final state momentum q f, leads to a J x ( R O ~  W~-['~f) 
behaviour. This shows a shrinking of the t-dependence with increasing m since qf 
decreases. For large s/rn 2, however, this effect gives a t-dependence independent of 
m 2 . 

3. Regge recurrence excitation in the dual resonance model 

Explicit calculations with a naturality conserving meson vertex and a naturality 
changing meson vertex are reproduced in appendix B. These vertices can be applied 
to natural parity meson production (JP = 0 ÷, 1- ,  2 +, 3 - ,  etc.) from pseudo.scalar 
mesons by the exchange of natural or unnatural parity Regge trajectories. The ap- 
plications will be most fruitful, if the amplitudes under consideration are Regge be- 
haved in s-dependence and phase and have the t-dependence characteristic of dual 
resonance couplings. 

For vector meson production on nucleons (PN ~ VN) the n = 1 natural parity 
isoscalar exchange amplitude (~  - f,} is indeed found [ L3] to have the Regge s- 
dependence: ( -  t')~ (~'s) ~(t) F(i - ~(t)) ~t(t) where ~ is the signature factor 
(~- 1 - e-inc'(t)). Tile 0 - A 2 charge exchange n = 1 amplitude is relatively small and 
hard to isolate without polarization data. The n = 1 unnatural parity charge ex- 
change (n) producing p with X = 0 in the s-channel frame is also found [ 14, i 5] to 
have the shrinking s-dependence of  a Regge trajectory exchange. The t-dependence 
of this amplitude is found [ 16] to be 0a 2 - O- t ~ ebt with b = 4.4 GeV -2 at 
17.2 GeV/c. This can be compared [ 1 ] with the Regge limit of a dual model ex- 
pression O(t) I" ( -  o~t))/ i ,( t)(a s) a(t) where #(t) is the product of the n0 and NN 
residues, In the range 0 < - t < 0.2 GeV 2. this latter expression behaves approxi. 
mately as (ta 2 - t) - t  l~(t) e cr where, at 17.2 GeV/c, c = 3.8 for a'  = 0.9 and c = 4.3 
for a' = 1.0. Comparing with the empirical values, the t-dependence of f ( t ) ,  thus 
defined with the duality scale of s of l/a', is almost constant apart from ~ fac- 
tors. This reggeized n-exchange gives a natural prediction for the exponential form 
factor that would have been needed for elementary n-exchange. 

Bearing in mind these expectations of which amplitudes should be Regge be- 
haved, some applications are presented of the dual resonance model couplings of 
Regge recurrences. Details are given in appendix B. 

3.1. Tile ratio o f  natural parity exchange to unnatural parity exchange 

The n exchange Regge couplings to recurrence states of spin J and helicity ),, 
UJ(t, m2), has the structure of the decay matrix element of the state to nn, and 



436 c Michael. Production of Regge recurrences 

an off-shell correction factor Xx J which, for thews-channel helicity frame, is the pro- 
duct of a low order polynomial in t and a ( -  t): Ixl factor. For natural parity ex- 
change, the Regge coupling NJ(t. m 2) has the structure of a decay matrix element, 
times a factor vr-L-t-/p a coming from the naturality change, and an off-shell correc- 
tion factor. Because of this ~ - t / p  a factor, NJI (m2)/UJo(m 2) ~ m - t  for increasing 
J. or or(m2); at fixed-t. Explicitly evaluating the factors in appendix B. gives 
N J / t d  ~x/-U-{-t, 0.70~,/L--/and 0.56x/Z-/for J =  I. 2 and 3 production (,O, f0' g) 1 /~0  
respectively at t ~ 0. 

This dependence is similar to the  (m2) e~U~O)-aN(O) or  m - 1  dependence arising 
on average in the finite mass sum rule approach. Experimental evidence supporting 
this dependence has been given 12]. in particular a comparison o f l  t = 0 natural 
parity exchange and I t = ! unnatttral parity exchange in nN ~ ,oN and nN --" gN. 
n-p  ~ n-n÷n data also show [ 15] a relative decrease of natural parity exchange 
with increasing rrn mass. The contribution of rite n cut makes this more difficult to 
analyze quantitatively, however. 

3. 2. Slope dependence on m" 

Tile t dependences of the Regge vertices are given by tile factors XJ(t. m 2) which 
are presented in appendix B. The t-dependence is different for different helicity am- 
plitudes and also different for s- or t-channel frames. The t-dependence is not of 
exponential form. and is characterized by the linear term in t at small-t; R ] ~ (  - t) ½fxl 
(I + b l t  + . . .  ) .  Tile slope of the t-dependence of the production amplitude as a 
function of excitation J = ~(m 2) is characterized by b(J). An antishrinking of tile 
spin-,/production cross section with t means a decrease of b with increasing m 2 at 
fixed energy s. For large-J and k t -- 0, the r-exchange couplingdoes have an anti- 
shrinking behaviour of the slope b as approximately b, J -0 (rn2) "" - ½a'lo~(m2), 

• t ~ / -  

smdlar to that found in the finite mass sum rule approaches from the ( s /m~  ~(t) 
factor. The same coupling in the s-channel frame (k s -- 0), however, has a strongly 
shrinking behaviour b J -0 (m2) " m2 coming from the crossing matrix. For the 
lowest spin states, onehnds explicitly: 
bp=0 ,  bfo = 0.8 andbg= 1.2 for~s =0 nexchange; 

b p=0 ,  bfo= 0 andbg= 0.14 fOrks=-+ l natural parity exchange; 

bp = 0, bfo - 0.9 and bg - 1.4 for comparison from a - a ' loga 'm 2 

antishrinkage. These slope factors b J represent the change in slope for different 
Regge recurrences at the meson vertex. An overall t-dependence coming from the 
Regge pole exchange factors and the baryon vertex have also to be added of course. 

The ~s = 0 n-exchange amplitude in rrN --*.,oN seems to be Regge behaved as dis- 
cussed above. The comparison of this amplitude with those for f0 and g production 
should be a particularly appropriate test of the predictions. Data indicate [15] that 
the s-channel helicity slope parameter is constant within errors from the ,o to f0 
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region in 7rN --, nnN at 17.2 GeV/c. The analysis assumes a common slope for all 
amplitudes at a given mass. however, although the p and f0 Xs = 0 amplitudes 
should dominate. A separation of these contributions and an extension to the g- 
meson region are needed to clarify experimentally the shrinkage or antishrinkage 
of the slope with J. 

3.3. Crossing rnatr£,c zeroes 

Consider n-exchange producing natural parity mesons. On the n-exchange pole, 
the only coupling in the t-channel helicity frame is R J ~(rn 2) Assuming that this 

,,,t=l) 
is the only helicitv coupling for all t, would then give an s-channel helicity structure 
n~s(t, m 2) = dJso(COSX(t))R~t=0(t, m2).Thus the zeroes of the d J function in t 
would be present in the s-channel helicity couplings. For J = I production this yields 
RJs lo( t  4 m2)  ~ cos X(t) ~ (t + m 2 - ~a 2) which has a zero in the physical region at 
t = - m" +ta" ~ - 0.6. At high energies, the data show [16] no sign of such a zero. 
Such zeroes can only be removed by introducing non-zero t-channel couplings to 
?~t #: O. Tile full dual resonance model vertex, indeed, contains such reggeized n- 
couplings to h t :4:0 amplitudes (vanishing at a(t)  = 0 of course). Then crossing to 
the s-channel helicity frame, the combination of contributions from different t. 
channel helicities no longer has tile crossing matrix zeroes. Appendix B establishes 
this explicitly. ForJ  = 1 production, for example, RJslo(t ,  m 2) is a constant and 
the unwanted zero is removed naturally. 

It is these additional helicity couplings of tile Regge exchange that are important. 
They emerge naturally from the dual model structure and indicate that the s-channel 
helicity amplitudes have a simpler structure in t compared to the t-channel helicity 
amplitudes. Thus tile dual model Regge vertex structure justifies the assumption of 
simple s-channel helicity couplings that have been made empirically. For instance, the 
surprising constancy [ 16] in t of the ratio ~'s of S- to P-wave nn production in 
Xs = 0 is naturally explained; this is related to the above discussion of tile filling in 
of the crossing matrix zeroes. A model approach to n.exchange [ 17] takes the s- 
channel helicity amplitudes obtained by crossing the t-channel Born term and then 
arbitrarily replaces t b y / 2  in all factors except for the essential ( -  t)½n/(lJ 2 - t) de- 
pendence. This has the feature found naturally in the dual vertices of removing the 
t-structure coming from file crossing matrix, but also goes further since it intro- 
duces an absorption correction or cut in the n = 0 amplitude which has flip at both 
Regge vertices. 

The additional Regge couplings also play a role in making the ~'t = 2 production 
amplitudes significant for t-values of the order of 1 GeV 2. Thus, taking as an ex- 
ample A 2 or K** production by natural parity exchange, the helicity ~'t = 2 or ~ = 2 
contribution can be estimated from the formulae of appendix B and will be signifi- 
cant. 
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4. Conclusion 

The most reliable component of the dual resonance model should be the vertex 
couplings for mesons on leading trajectories. Problems of daughter states, fermions, 
and unitarity corrections are thereby avoided. The Regge exchange coupling to pro- 
duce leading Regge trajectory recurrence states has been evaluated to give the follow- 
ing results. 

(a) The production amplitudes for Regge recurrence states can be predicted from 
a knowledge of the J = ! amplitude. The resonance production amplitude decreases 

1 1 as (~ e)~ ] for large J. 
with increasing J. 

(c) The variation of t-dependence with helicity and J has been discussed. Certain 
s-channel helicity amplitudes show a shrinkage of t-dependence with increasing J. 

(d) Additional Regge couplings have been found that fill in the crossing matrix 
zeroes and so yield s-channel helicity amplitudes with simple t-dependence. 

These results are simplest to apply in practice to amplitudes that are Regge be- 
haved. Experimental evidence supporting (b) and (d) has been presented. Many 
specific predictions are contained in the couplings evaluated in appendix B. A suc- 
cessful analysis of the particle-Regge.Regge coupling may then give information 
that can be used to tackle the intriguing problem of understanding why the absorp- 
tion corrections (or Regge cut effects) in the n = 0 nN -'-, nnN amplitude appear 
[ ! 8, 15] to decrease with increasing ttt 2 (or J)  relative to the n-pole contribution. 

I gratefully acknowledge discussions with P. l loyer, A.D. Martin and B. Petersson. 

Appendix A. Definitions of production amplitudes 

Consider the process a + b "-* m + e where m is a spin.J resonance of helicity X 
which decays with invariant mass m into two spinless particles c and d. in the rest 
frame of m. the direction of pc is described by spherical polar angles 0 and ~ in a 
frame with Oy normal to the a + b * m + e scattering plane and 0 z either alongpa 
in the t-channel frame or along - Pe in the s-channel frame. The helicity amplitude 
for the a + b --, c + d + e process can thus be factorized 

A ubua (s. t .m 2 . cos0 ,o )  = ~ A vbuaJ ( s , t .m  2) 
ue h 'Ue 

X [m 2 - m 2 - iml  rT(m2)] -1 Mj  dJo(cOs 0) e ix¢' (A.I) 

where Mj  is file decay matrix element of m into c + d and is related to the partial 
width by 
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1 q IMjI 2 r tz jFcd(m 2 ) - ~ +  1 8rrm (A,2) 

The exchange of a Regge pole r of  trajectory ~ t ) ,  signature r, and lowest particle 
state of  spinj  O, then gives an a + b -+ m + e amplitude: 

AtabUaJ(s, t, m 2) = R l (t, m 2) [ -  r - e -iTr~(t)] (a:s) cz(r) ot'I'(j 0 -o t ( t ) )R~b .e ( t )  
laeh taah 

(A.3) 

R J. ~(t, m 2) is the required coupling of the exchanged reggeon r of momentum 
trata~'~fer t to the incoming particle a and the produced state of  mass m, spin J and 
helicity ~,. 

Some relations between these amplitudes and the observable differential cross 
sections are 

A. 1. Inclusive cross section a + b -* anything ÷ e. 

From the generalized optical theorem, this can be related to the discontinuity 
of the forward three-particle a + b + e  scattering amplitude A(s, t, m 2) 

do I 
- disc A(s. t, m 2) . (A.4) 

dt dm 2 128n2sq 2 

An average over helicity labels is implied. For s/m 2 large and m 2 also large, a triple 
Regge behaviour has the form 

A(s , t ,  m2)  ( s i % ( t ) ( m 2 ) % ( ° ) . . .  _ _  
m 2 ' 

(A.5) 

where a 0 is the exchange trajectory (pomeron or other) intercept in the reggeon 
( r ) .  particle (a) total cross section. 

A.2. Exclusive cross section a + b -. c + d + e. 

do 1 1 qcd AUbUa 2 
- - -  [ ( s , t , m  2 , c o s 0  ¢)1 

dt dm 2 d~2 64nsq2i (2n) 3 4m Ue ' ' 
(A.6) 

where an average over initial and sum over final helicities is implied. For s/rn 2 large 
and m 2 also large, there exists a double Regge limit with the form 
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C~r(tbe) 
~{tac) 

A ~lm-Slkz] (m 2} (A.7) 

A.3. Spin J production in a + b -" c + d + e attd resonance production. 

The Y~Lt(O, ~) moments of  the observable of  eq. ( A 6 )  can be used to try and 
extract the spin-J, helicity-;% component in the cd final state channel. Resonance 
states in this channel should have Breit-Wigner shapes in their m2-dependence. In- 

. • ~ " • - J  "~ J 2 tegrating over the resonance hne shape m m ' ,  and multtplymg by I tot(m" )/Fcd(m ) 
to correct for the branching ratio, then gives the resonance production cross sec- 
tion. Because of  unitarity, this is also related to the factorized production ampli- 
tude defined in eq. (A.I).  by 

J do - 1 ZbUa J mj2)l 2 
Px~, dt 647rsq2i I Aue~ (s. t, 

(A.8) 

where a helicity average over/a a and Pb and sum over Pc is implied. 
As a further clarification, the information contained in the m 2- or J-dependent 

observables A.I to A.3 is illustrated at the 1r-exchange pole, t =/~2. in nN--*rrrrN : 
A. I is related to o ~  t (m2); A.2 is related to (do/dt)nn(rn2, cos 0); A.3 is related to 
mj FJ(mg) .  

Appendix B. Explicit dual resonance model couplings 

Particle - Regge pole exchange - Regge recurrence production coupling residues 
RJ(t, m 2) are evaluated from dual resonance models. Isospin and signature factors 
are neglected, since the dynamical dependence on the variables is under study. Triple 
meson vertices are considered which are naturality conserving (for example n + n ~ p ,  
fo' g etc.) or naturality changing (for example n + A 2 -* p '  f0' g etc., or n + p "--, w, 
A 2 etc.). 

B. 1. Naturality conserving vertex 

From factorizing the dual n-point function B n into two pieces on a leading pole 
n.t at o¢(m 2) = J  in an internal subenergy, the following expression for the process 
a + b--, m + e arises [111 

V J 
iz I ""~J 

J 

= g2 ( v / ~ d /  f d u  ,,-t-,~{s~ (l - / , ) - i - ,~ ,~  [ ]  q,~,, - p~(l - u)). 
i--1 

(B.I) 
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This must be contracted with the polarization tensor e I (X) to obtain the 
helicity amplitudes. In the rest frame of at, where p has sl~l~er~Jal polar co-ordinates 
0 and ~, 

e J ( P f  g ( c o s 0 ) e  t~'O (B.2) p~ipU2. . ,  p U j _ _ . ~ j  dx 0 
/a l...la J 

where Cj = (~_l)! 2-J/(J  !)2. A further property of the polarization tensor is 

e J = ~ ( J - r . r ,  X2. h t l J ,  h)er~l. . .ur(ht)¢ J - r  (B.3) ~ ...ug Ur+l . . .uj  ( h 2 )  " 
kl  ~'2 

Then expanding the product in eq. (B.I) gives terms in (p~a)r( - pUtt -r  and eqs. 
(B.2) and {B.3) can be used to simplify the expression. In the s-channel helicity 
frame, - Pe is along O, and has magnitude s/2m for large-s, while Pa has z-compo- 
nent Pa cos X and x-component Pa sin × where 

"~ a 2 p~ (t) = h(m 2, t. )/4m 2 , 

Pa(t) cos X (t) = (m 2 + t - a 2)/2m , 

I 
Pa{t) sin × (t) = ( -  t)~" . (B.4) 

l%r large-s, the Rcgge limit of eq. (B. I), gives tile Rcgge residue, defined as in 
appendix A, 

_ ,  (2a')  ~1 J .  2, XJa(t,m 2) 
 /77i .7 p" ' 

where or(t) = a'(t ~ o 2) and in the s-channel helicity frame 

(a.5) 

.I (P.-, ( t ) ) ' (2~ ' 'm) ' - s  r ( -  ~ t )  + J  - r) 
XJ(t '  m2) = PaY(°2k ~ (J - r)! [ ' ( -  ~(t)) 

r=O 

(J d~o (cos × (t)) (B.6) 
+ X)!(J x_)~ l 

x ~7,x)! (r-Z x)!J 

This latter expression reduces to the product of a factor ( -  t) ~lxl and a polynomial 
in t of order J - I k I or less, 

For the t-channel frame, the result is the same as eq. (B.5) and (B,6) except for 
the interchange of r and J - r in the first three factors in tile numerator of  eq. (B.d 

On shell at or(t) = 0 tile expressions simplify to 
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X: = d J (cos X(t,")) 
~'s )'s 0 

X J 
xt = ~Sxt 0 . (B.7) 

The first term in (B.5) is the decay matrix element for m "--" a * on shell exchange 
particle. The above B n results are for a theory of scalar particles with lowest states 
at a(m 2) = O. in practice, for the naturality conserving vertex rr + (rr exchange) ~ p, 
fo'  g etc., the produced resonances have trajectories with ot(m 2) = ! as lowest state. 
This can be incorporated into a B 5 model for n + n ~ n + n + e (where e is a 
JP = 0 + state) in the same way as into the B 4 model [5, 6] for rrn -* nn. The result- 
ing B 5 expression agrees with the B 4 matrix element on shell, and gives the same 
result for the Regge vertexas eq. (B.5) except for the replacement of  the ~ factor 
in the denominator by x/(J  - I) !. 

The t-dependence of the correction factor X(t )  can be expressed, for small-t, as 

XJ(t ,  m 2) = (1 + t b J ( m  2) + O(t2))  ( -  t) [Iht. 

• -~ U 2 ' Neglecting a" and gives a general result 

(B.8) 

bJs=oh = bJht=O + J(J +~ I ) 
Itl" 

J 
J! 1 (or,m2) ,. - - J - W ~ j : ~ I !  ; 

t.~ hJt=O ttl 2 r= 2 
(B.9) 

Similarly, the t-dependence of ~x IXJ 12 is clu, racterized at s,uall-t by ~ b J 
Explicit off-shell correction l'acto~s for a 2 = 02 =/a2 and " xt=°' 

Pa = ~tn(I ~- 4p2/m 2)] ill tile s-channel helicity frame are 

x , ' ,  = , x = , 

Pa "~ X~3 = ~t {(m 2 + ,.~2) + (t - / j 2 )  (2 - l/a'm2)} , 

Pa Xi" = ( -  ] tj}t m ,  PaX  2 = - ~V r'~ t, 

3 3 = 1  "~ PaXo ~ { ( m  4 +6m2/a 2 ) + ( t - / a  2 ) (6m 2-ot3- _ , m T ~ , ) } ,  

p~X 13 3 = - ~ x / = - ~  ;C,.-" +u  2) + i t  - u2)(1 - 1 / a ; , f l ) ) ,  

pa3X3=. - ~ t t n x / ~ '  pa3 X 33 = _ ¼v~ (_ t)~ . (B.10) 
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For the t-channel frame, similarly 

Pa(tlX~= ( ' (1 3(it2-t)] Pa I t ' )  + . . . .  
m 2 _ 402 ] ' 

Pa(t)Xl x / ~ (  t _  ~2) = ~ ~ : m  
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(B.II)  

n . J .  , r . . ,%aturahty changtng vertex 

From the B 5 dual resonance model for five pseudo-scalar mesons [ 12], one can 
extract the vertex for producing natural parity meson Regge recurrences by the ex- 
change of a natural parity Regge trajectory a(t)  - I = a'(t- 02). Extracting the lead- 
ing trajectory spin J-pole in the cd channel and taking the Regge limit s ~*o, gives a 
resonance production coupling together with the decay amplitude. Factorizing off 
the decay matrix element and picking out in the s-channel helicity frame the coeffi- 
cient of d J0 (cos 0) e ~7~' (see eq. (A. I )) gives the production Regge residue 

N~..,,,2~-- (2';r '~ (J~_~_t~p~o- ,) e - t  x~(,..,'-) 
p~(v') 

j {Pa(t)),- I ( 2 a ' m y - ]  
A?,'J(t, m 2 ) = paI-J (o2) r=l ~ .... ~ ( f ~  r)i . . . . . .  

I'(-c~(t)+J~.r+ I) trlr+ I ) ( J + ~ , ) ! ( J =  ~,)!~ ~" 
X - -  i,(= .--¢=(.tj.-~. i )  ..... ~ , )0-~1)  i f"+ ),)! ( r - X ) ! ' /  

X (d~x(cosX(t))+d r (cos X(t))} (B. 12) 
- I X  

which is again a polynomial in t of order J- IX l or less together with a factor ( -  t)~ TM, 
For on-shell exchange at t = o 2 

x~(o 2, m 2) -- a ~  (cos.  (02)) + d ] t~(cos ,,to2)), (B.13) 

and in the t-channel frame 

XJx t (v2' m2) = 5xt'- 1 ' (B.14) 

Specific forms of tile off-shell correction factor in the s-channel helicity frame, 
Pa = P-, (°2) and a = It, are where 
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X~O = 0,  

x 11 = t PaX~ - m2 + °2 - u2 " , z,+,+,, , p~ x ]  = x / s T ,  

2 3= 1__[(m2+o2 la2)2+m202+(t_o2)(m2 l / a ' ) ]  
P a X I  4m 2 - , 

2 3 _ , f f _ ~ / - ~ - t  2 02 2 p X 2 _ ~ +  2-~-"" m + _ ~ 2 ) ,  P a X ] = _ ~ V ~ t .  

In the t-channel  hel ic i ty  frame 

Pa X21 = Pa (t) -t ( I - ~( t ) )  cos ×(t) 
2Ct ' m 

, .~ i - - a ( t )  . 
Pa a ;  = ' x ~ - -  sm × ( t ) .  

- 20t m 

(B.16) 

(B.17) 

References  

[ 1 ] C. Michael, Proc. of the 4th Int. Conf. on hi~ energy collisions, Oxford,  (RI IEL,  1972); 
Proc. of the 16th Int. Conf on high energy physics. Batavia, (NAL, 1973). 

121 P. lloyer, R.(;. Roberts and D.P. Roy, Nuclear Phys. B56 (1973) 173. 
[31 J. lllatt and V. Wcissktqff, Theoretical nuclear physics, (John Wiley and S,ms, New York, 

1952). 
141 F. yon Ilippel and C. Quigg. Phys. Rev. I)5 (1972) 624. 
151 ('. Lovelacc. Phys. I+ettcrs 2811 (1968) 624. 
[6] J. Shapiro, Phys. Roy. 179 (1969) 1345. 
171 Particle Data (;roup, Rev. Mod. Phys, 45 (1973) (to be publirdled). 
[81 D. Alessandrini, D. Amati, M. Le Bellac and D. Olive, Phys. Reports 1 (1971) 269; 

ll.M. Chan and T.S. "l'sun, Phys. Rev, D4 (1971) 156. 
[9] P. tloyer and J. Kwiecinski, Rutherfl~rd preprint RPP/T46 (1973). 

[10] II. llarari, Ann. of Phys. 63 (1971) 432. 
[ 111 D.K. Campbell, D.I. Olive and W. Zakrewski, Nuclear Phys. B 14 (1969) 319. 
[12] K. Bardakci and 11. Ruegg, Phys. Letters 2811 (1969)671. 
[ 131 C. Michael, CERN 1"11. 1627 (1973). 
[ 14] P. Estabrooks and A.D. Martin, Phys. Letters 4211 (1972) 229. 
1151 P. Estabrooks and A.D. Martin, CERN TII. 1647 (1973). 
[16] P. Estabrooks and A.D. Martin, Phys. Letters 41B (1972) 350;CERN TII. 1668 (1973). 
[171 P. Williams, Phys. Rev. DI (1970) 1312. 
[18] W. Ochs and F. Wagner, MPI Munich preprim (19731. 


